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Abstract—Approximate computing is a promising solution to
design faster and more energy efficient systems, which provides
an adequate quality for a variety of functions. Division, in
particular, floating point division, is one of the most important
operations in multimedia applications, which has been imple-
mented less in hardware due to its significant cost and complexity.
In this paper, we proposed CADE, a Configurable Approximate
Divider which performs floating point division operation with a
runtime controllable accuracy. The approximation of the CADE
is accomplished by removing the costly division operation and
replacing it with a subtraction of the input operands mantissa.
To increase the level of accuracy, CADE analyses the first N
bits (called tuning bits) of both input operands mantissa to
estimate the division error. If CADE determines that the first
approximation is unacceptable, a pre-computed value is retrieved
from memory and subtracted from the first approximation
mantissa. At runtime, CADE can provide a higher accuracy
by increasing the number of tuning bits. The proposed CADE
was integrated on the AMD GPU architecture. Our evaluation
shows that CADE is at least 4.1x more energy efficient, 1.5x
faster, and 1.7x higher area efficient as compared to state-of-
the-art approximate dividers while providing 25% lower error
rate. In addition, CADE gives a new knob to GPU in order to
configure the level of approximation at runtime depending on
the application/user accuracy requirement.

Index Terms—Approximate computing,
GPGPU

Energy-efficiency,

I. INTRODUCTION

The number of smart devices has been increasing exponen-
tially over the past decade to a point where they outnumbered
human beings [1]. As the Internet of Things (IoT) is realized,
devices will be ready to react to a person’s every desire.
With humans still highly dependent on their senses, IoT
systems would need to be able to interact with humans through
embedded devices [2]. As a result, a large amount of data
would be gathered from the interactions between humans and
devices, requiring fast and real-time data processing [3]-[5].
This poses a challenge as current embedded devices lack
resources and battery life to process enormous amount of
data [3].

Current sensory data algorithms tend to be, at their core,
statistical, capable of functioning with approximate computa-
tions [6]-[12]. As approximate computing continues to gain
traction for its low energy consumption, precision would be
replaced with energy efficiency in embedded devices [6].
Recently, attention has been focused on designing approximate
arithmetic units such as adder [13]-[15] and multipliers [9],
[16]-[18]. However, division, in particular, floating point di-
vision, is one of the most important operations in multimedia
applications. For example, in the OpenCV library [19], a large
amount of image processing applications utilize division in
their computation. In current architectures, the division tends

to be the least utilized due to its high energy consumption and
low speed [20].

Recent work has tried to accelerate division by enabling
approximation [21]-[25]. Work in [21], [22] focused on the
truncation of bits to a better approximate division. Although
this approach reduces the size of the required division, (i)
it still utilizes a costly divider, and (ii) it does not offer a
way to change the level of accuracy at runtime. Work in [22]
approximate the division functionality by enabling a truncated
value to be multiplied by an approximated inverse value of
the dividend. Work in [26] changed the standard division
functionality by incorporating new or modifying logic blocks
in order to stray away from the division. This improves the
divider area and energy efficiency by reducing the number
of processing bits or area. However, these approaches do not
include tuning methods that can be used at runtime. Thus,
limiting the generality of these approaches to Application-
Specific Integrated Circuit (ASIC), where the applications that
require a lower error rate can be predetermined prior to chip
design.

In this paper, a runtime configurable floating point divider,
called CADE, is proposed capable of high error runtime
correction without alienating specific inputs and simple in-
tegration into general processors. CADE replaces the floating
point division with a subtraction of the two input operands
mantissa. The methodology behind the design arises from
analyzing the division process which consists of shifting and
subtraction process that occurs. The design ensures less than
12.5% error rate with runtime approximate configuration with
high energy efficiency performance. CADE was integrated as
a new floating point unit in AMD GPU architecture. Our
evaluation shows that CADE is at least 4.1 x more energy
efficient, 1.5x faster, and 1.7x higher area efficient as com-
pared to state-of-the-art approximate dividers while providing
25% lower error rate. In addition, CADE creates a knob for
multi-level configuration of approximation during runtime for
the GPU to better adjust to each application error tolerance.

II. PROPOSED CADE
A. IEEE-754 Floating Point

Implementing the IEEE-754 32 bit floating point notation
that is characterized as a 32-bit number string (X3,...,X1)
consisting of three distinct elements: a sign bit, exponent bits,
and fractional value bits. The initial bit in the floating point
notation (X3,) indicates the sign bit. The following 8 bits
indicate the exponent of a binary number (X31,...,X24), with
a range of -126 to 127. The final 23 bits (X»3,...,X) indicate
the fractional element, also referred to as the mantissa, with a
value range between 1 and 2. (Figure 1)
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Fig. 2. The error distribution for X divided by Y as the mantissa values for
X and Y increase from 1 to 2.

B. Approximate Division

In this paper, a runtime configurable floating point divider,
called CADE, is proposed that is capable of supporting ap-
proximate division. Figure 1 illustrates an overview of the
CADE approximate model. The division process starts by
XORing the sign bits of X and Y input operands, followed by
the subtracting of both the exponent and mantissa elements of
X and Y. If mantissa X is less than mantissa Y, subtraction will
result in an underflow; to correct the underflow, an additional
1 is subtracted from the exponent. Thus, approximations are
applicable to the fixed-point division between the mantissa
because it can be achieved by subtraction and shifting of the
operation between the partial products. Since in floating point
representation, the shift is already applied by representing the
mantissa with a value between 1-2, thus, this subtraction is a
good approximation of the mantissa division.

Figure 2 shows the error distribution of the proposed divider
design for X and Y input operands, with mantissa values
ranging from 1 to 2. Assume the input X mantissa is constant,
thus in CADE, the division error reaches to its maximum
12.5% when mantissa Y value increases to 1.5. From another
hand, the error decreases to 0% as mantissa Y reaches to
value 2. The same trend occurs when Y is constant and the X
mantissa increases to 2. Although the maximum error rate for
the proposed divider without proper tuning is 12.5%, the error
rate is highly dependent on its input operands. For example,
if X =35 and Y = 10 then in exact mode the division answer
is 3.5. However, using CADE results in 3.69 approximation
with an error rate of 5.36%. To further control the error, a
tuning process that limits the maximum error rate that CADE
accepts is required. This would allow all inputs to be run in
approximate mode.
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Fig. 4. Heatmap error rate distribution for CADE with (a) no tuning, and
(b-d) after tuning with N =2, 3 and 4.

C. Tuning Approximation

To achieve the desired accuracy, we design a tuning method
which allows CADE to configure the maximum acceptable
error rate. Figure 3 shows the overview of the CADE tuning
approach. The tuning operation consists of a second stage
approximation where the lookup table contains the offsets
required to reduce the error of the CADE. For a given
application, X and Y are the inputs, A is the approximation
with no tuning, B is the selected offset, and Z is the final
approximation post tuning. Since the error is deterministic
based on the inputs, specific input cases that produce high
error can be detected and then corrected accordingly. As a
result, CADE maintains the benefits of approximating the
result without having to resort the exact computation for cases
with a high error rate. The tuning design takes advantage of
the mantissa representation where the most significant bits of
each input mantissa have the most weight in determining the
result of a computation in both exact and approximate modes.
Thus, the N most significant bits of each input mantissa are
used to estimate the error that CADE produces.

The N value is determined by the maximum error that an
application is willing to accept. A higher N value results in
2(Nx2) regions of resolution to tune for error, however, it
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Fig. 5. Distribution of error rate (a) before tuning (b) tuning in different
configurations N# of tuning bits).

requires a larger lookup table to store the values utilized in
the second stage of approximation. Each lookup table entry
corresponds to a region with a maximum and minimum error
range that is used to determine the optimal error correction
offset. Figure 4a illustrates the error rate with no tuning
through a heat map, where the error rate is highest when
mantissa X is both closer to 1 and 2 and mantissa Y is in
the range of 1.2 and 1.8. Through the detection of the values
that produce the highest error rate, an adequate value of N
can be selected to decrease the error rate around the mantissa
values of X and Y that produce a high error rate. Figure 4b-d
show how the error rate around the mantissa values of X and
Y decreases as the value of N increased. Once a N value is
selected, the offset values are stored in a programmable table,
rather than having them hardwired through combinational
logic or a static table, this allows the design to be optimized
for specific applications past the general case. For example,
when dividing by power of 2’s CADE requires no tuning;
however, for an application that requires a lower error rate, the
tuning method can be implemented to satisfy the application’s
error rate restrictions. The error distribution for random inputs
with no tuning is illustrated in Figure 5a and with tuning
in Figure 5b whereas the value of N increases, the error
distribution begins to center around 0.

III. RESULTS

A. Experimental Setup

CADE was integrated into an AMD GPU architecture,
Radeon HD 7970 device, by modifying Multi2sim, a cycle
accurate CPU-GPU simulator [27]. We add CADE as a new
floating point approximate divider. The FPUs are balanced for
6-stage using FloPoCo [28] and are synthesized by Synopsys
Design Compiler in 45-nm ASIC flow and optimized for
power consumption using Synopsys Prime Time. The energy
consumption and execution time of the proposed CADE are
measured using HSPICE circuit-level simulation in 45-nm
technology. For the application level, the effectiveness of
the proposed CADE was tested by running a wide range
of applications three popular applications including image
compression, image filtering, and Taylor series approximation.

B. Design vs Other Dividers

Comparing the efficiency and accuracy of the proposed
CADE with state-of-the-art dividers including the Low-Power
Divider(LPDivider) [21], SEERAD [29], TruncApp [22], and
AXDnr [23]. Our evaluation shows that CADE can achieve at
least 4.1x energy efficiency improvement and 1.5x speedup
as compared to prior work while providing 25% lower error
rate.

TABLE I
COMPARISON OF THE PROPOSED CADE WITH STATE-OF-THE-ART
APPROXIMATE DIVIDERS.

Max Energy Execution Tunabl Runtime  Floating

Error ) (ns) unable Tunable Support
LPDivider [21] 36.0%  3.17pJ 5.70ns X X X
SEERAD() [29] | 37.5%  0.75p] 0.76ns v X X
Truncapp [22] 50.0% 1.14pJ 1.08ns v X X
AXDur [23] 60.0%  2.06pJ 2.46ns v X X
CADE 125%  0.18p) 0.51ns v v v

TABLE II

AVERAGE, MAXIMUM, AND MINIMUM ERROR RATE FOR CADE USING
DIFFERENT TUNING BITS.

\ N | 0 1 2 3 4 |
Average Error | 4.06% 022% 0.58% 042%  0.05%
Max Error 125% 9.01% 6.03% 4.72% 3.03%
Lookup Size NA 4B 16B 64B 256B

Table I also compares different designs in terms config-
urability. Our evaluation shows that although most of the
approaches can configure the level of accuracy, their config-
uration can only happen in offline. In contrast, to the best of
our knowledge, CADE is the first floating point divider which
can configure the level of accuracy at runtime depending on
the application requirement. In addition, the lack of floating
point support further reduces the generality of the prior work,
for platforms such as CPU and GPU.

C. CADE Exploration

CADE & Tuning Bits: In CADE, the number of tuning
bits and lookup table bit-width provide a tradeoff between
CADE accuracy and efficiency. The number of tuning bits, N,
determines a granularity that we can detect different regions.
Table II lists the average and maximum CADE error rate using
a different number of tuning bits. Our result shows that both
maximum and average CADE error decrease by increasing
the number of tuning bits. However, as N increases, CADE
requires more memory to store the pre-computed offset values.
For example, CADE using N = 4 requires 4x larger memory
to store pre-computed results.

Lookup Table Resolution: Table III shows the impact of
the tuning bits (V) and the offset bit width (L) on CADE
error rate. The results show that as the value of L increases
(while N remains a constant value), the error rate gradually
reduces. However, this error reduction is smooth and stops
for offsets with larger than L = 8 bitwidth. Furthermore, as L
increases, the memory size also scales accordingly with L x
22N Therefore, increasing the offset larger than 8-bits only
results in degradation of CADE energy-delay product (EDP)
and memory size. Since CADE error rate has a higher effect
on the error rate, it is ideal to use CADE with N =4 and
L = 8. Of course, one can decide to use smaller tuning bits, if
the running applications have higher error tolerate. However,
increasing L large than 8 has minimal effect on error rate
reduction.

D. Accuracy Vs CADE Tuning

As explained in Section II-C, CADE can achieve high
accuracy through the incorporation of the tuning method.
Table IV show the quality of computation in three different
applications for CADE with and without tuning. We have



TABLE III
IMPACT OF THE LOOKUP TABLE BIT-WIDTH ON THE CADE ERROR RATE,
EDP IMPROVEMENT AND LOOKUP TABLE SIZE (N = 4).

\ Bit-width L \ 2 | 4 | 8 | 12 | 16 |
Error Rate 6.62% | 6.05% | 6.03% | 6.03% | 6.03%
N=2 | EDP Improv. 14.9% 13.6x 12.4% 11.1x 9.8x
Memory Size 4B 8B 16B 24B 32B
Error Rate 6.63% | 6.00% | 4.72% | 4.72% | 4.72%
N=3 | EDP Improv. | 149x 13.6x 12.4x 11.1x 9.8x
Memory Size 16B 32B 64B 96B 128B
Error Rate 558% | 441% | 3.03% | 3.03% | 3.03%
N=4 | EDP Improv. 14.9% 13.6x 12.4% 11.1x 9.8x
Memory Size 64B 128B 256B 384B 512B
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Fig. 6. Quality of computation using approximate divider on JPEG compres-
sion.

tested the quality of applications on 1000 random image from
Caltech 101 [30] dataset. For the JPEG and Blur applications,
PSNR was the quality metric used, while the average relative
error is used to check the accuracy of the Taylor series.
Both JPEG compression and Blur filter application resulted
in an increase in PSNR value as N increased. Comparing
the average PSNR values across different data and differ-
ent N values, observations illustrate that JEPG compression
quality computation increases from 35.1dB with no tuning to
50.0dB with N = 4. Similarly, for the Blur filter application,
the average PSNR increases from 35.2dB with no tuning
to 47.08dB with N = 4. In the Taylor series, for all three
tested functions (sin(x), exp(x), and In(x)), however significant
decrease occurs in the average relative error when CADE
configuration changes from no tuning to tuning with N = 4.

Figure 6 illustrates multiple images tested with no tuning
and a tuning value of N = 4 for the Blur filter and JPEG
compression. With no tuning, the Blur filter showed brighter
images with lost details due to over-saturated pixels from over-
approximation. JPEG images ran with no tuning, resulted in
no noticeable impact on the DCT, but showed an over color
saturation for certain areas resulting in a loss of detail. When
tuning was introduced, the resulting images’ color values
were more accurately calculated to the point where the exact
image and the image produced through approximation were
indistinguishable to the naked eye. Overall, tuning the design
has an enormous upside in relation to error reduction of
different applications. The proposed tuning approach in CADE
provides an opportunity to change the level of approximation
at runtime, based on the running application on GPU.

IV. CONCLUSION

In this paper, we propose a novel configurable approximate
divider that efficiency divides floating point values with high
accuracy. CADE removes the costly mantissa division and
replaces it with a single subtraction between the two input
operands mantissa. The tuning process consists of using the
first N bits of both input mantissas to determine the amount
of error and correcting it accordingly. The CADE can be

TABLE IV
THE COMPUTATION ACCURACY OF CADE USING DIFFERENT TUNING

BITS.

| Tuning Bits N) | 0 1 2 3 4 |
JPEG Compression | 35.1dB  37.4dB  427dB _ 47.7dB _ 50.0dB
Blur Filter 352dB__39.0dB__38.JdB__41.2dB__47.3dB

sin(x) T03% 051% 042% 024% 0.17%

Taylor | exp(x) | 354% 136% 122% 059%  0.21%
Series In(x) 140%  0.84%  075%  033%  0.19%
Average | 1.81%  1.09%  0.80%  0.39%  0.19%

set to different levels of accuracy based on the value of N.
Our evaluation shows that CADE is the first floating point
divider which provides a new knob for GPU in order to
configure the level of approximation at runtime depending on
the application/user accuracy requirement.
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